Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400108, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558249

RESUMO

In contrast to the thermodynamically unfavorable anodic oxygen evolution reaction, the electrocatalytic urea oxidation reaction (UOR) presents a more favorable thermodynamic potential. However, the practical application of UOR has been hindered by sluggish kinetics. In this study, hierarchical porous nanosheet arrays featuring abundant Ni-WO3 heterointerfaces on nickel foam (Ni-WO3/NF) is introduced as a monolith electrode, demonstrating exceptional activity and stability toward UOR. The Ni-WO3/NF catalyst exhibits unprecedentedly rapid UOR kinetics (200 mA cm-2 at 1.384 V vs. RHE) and a high turnover frequency (0.456 s-1), surpassing most previously reported Ni-based catalysts, with negligible activity decay observed during a durability test lasting 150 h. Ex situ X-ray photoelectron spectroscopy and density functional theory calculations elucidate that the WO3 interface significantly modulates the local charge distribution of Ni species, facilitating the generation of Ni3+ with optimal affinity for interacting with urea molecules and CO2 intermediates at heterointerfaces during UOR. This mechanism accelerates the interfacial electrocatalytic kinetics. Additionally, in situ Fourier transform infrared spectroscopy provides deep insights into the substantial contribution of interfacial Ni-WO3 sites to UOR electrocatalysis, unraveling the underlying molecular-level mechanisms. Finally, the study explores the application of a direct urea fuel cell to inspire future practical implementations.

2.
Langmuir ; 40(9): 4852-4859, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382061

RESUMO

Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiO@NCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g-1 at 100 mA g-1, high rate capability of 484/467 mA h g-1 at 5.0 A g-1, and good long-term cycling stability of 663/634 mA h g-1 at 600th cycle at 1 A g-1, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g-1). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e-/Li+ transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs.

3.
Small ; 20(4): e2306396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712176

RESUMO

Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.

4.
Small ; : e2307252, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054813

RESUMO

Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen-based societies. While non-precious-metal-based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel-vanadium oxide nanosheet arrays grown on porous nickel foam (Ni-V2 O3 /PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni-V2 O3 /PNF delivers 10 mA cm-2 at an overpotential of 54 mV for HER and a mass-specific kinetic current of 19.3 A g-1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron-deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non-precious-metal-based electrocatalysts through the IEF strategy.

5.
ACS Nano ; 17(24): 25707-25720, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38047808

RESUMO

In the pursuit of efficient solar-driven electrocatalytic water splitting for hydrogen production, the intrinsic challenges posed by the sluggish kinetics of anodic oxygen evolution and intermittent sunlight have prompted the need for innovative energy systems. Here, we introduce an approach by coupling the polysulfides oxidation reaction with the hydrogen evolution reaction for energy-saving H2 production, which could be powered by an aqueous zinc-polysulfides battery to construct a self-powered energy system. This unusual hybrid water electrolyzer achieves 300 mA cm-2 at a low cell voltage of 1.14 V, saving electricity consumption by 100.4% from 5.47 to 2.73 kWh per m3 H2 compared to traditional overall water splitting. Benefiting from the favorable reaction kinetics of polysulfides oxidation/reduction, the aqueous zinc-polysulfides battery exhibits an energy efficiency of approximately 89% at 1.0 mA cm-2. Specially, the zinc-polysulfide battery effectively stores intermittent solar energy as chemical energy during light reaction by solar cells. Under an unassisted light reaction, the batteries could release energy to drive H2 production through a hybrid water electrolyzer for uninterrupted hydrogen production. Therefore, the aim of simultaneously generating H2 and eliminating the restrictions of intermittent sunlight is realized by combining the merits of polysulfides redox, an aqueous metal-polysulfide battery, and solar cells. We believe that this concept and utilization of polysulfides redox will inspire further fascinating attempts for the development of sustainable energy via electrocatalytic reactions.

6.
Chem Soc Rev ; 52(23): 8319-8373, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37920962

RESUMO

High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.

7.
Chem Commun (Camb) ; 59(85): 12771-12774, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37814843

RESUMO

Nitrogen-doped carbon nanoribbons and nanotubes decorated with Co3O4 nanoparticles were prepared by a metal-catalyzed graphitization-nitridization and oxidization process, using triazole and melamine as a solid nitrogen/carbon co-source, and assessed as anodes of lithium ion batteries (LIBs). These composite anodes display perfect electrochemical performance, indicating their potential for application in LIBs.

8.
ACS Nano ; 17(11): 10965-10975, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265321

RESUMO

Hydrazine-assisted water electrolysis presents a promising energy conversion technology for highly efficient hydrogen production. Owing to the potential coincidence region between hydrogen evolution reaction (HER) and hydrazine electro-oxidation, hydrazine oxidation reaction (HzOR) exhibits specific advantages on strategy combination, device construction, and application expansion. Herein, we report a bifunctional electrocatalyst of porous Ni foam-supported interfacial heterogeneous Ni2P/Co2P microspheres (denoted NiCoP/NF), which takes full advantage of this potential coincidence region. Thanks to the 3D microsphere structure and strong interfacial coupling effects between Ni2P and Co2P, NiCoP/NF demonstrates excellent bifunctional electrocatalytic performance, requiring ultralow overpotentials of 70 and 230 mV at 10 mA cm-2 for HER and HzOR, respectively. When using NiCoP/NF as both electrodes, HzOR-assisted water electrolysis exhibits considerably decreased potentials compared with the electro-oxidation of other chemical substrates. Furthermore, the potential coincidence region of 0.1 V makes the application of self-activated/propelled hydrazine-assisted alkaline seawater electrolysis, hydrazine-containing wastewater treatment, and Zn-hydrazine (Zn-Hz) battery realistic. The concept of potential coincidence region provided in this work has significant implications for water electrolysis and other related applications.

9.
Nanomicro Lett ; 15(1): 155, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337062

RESUMO

Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production. Rational design of bifunctional electrocatalysts, which can simultaneously accelerate hydrogen evolution reaction (HER)/hydrazine oxidation reaction (HzOR) kinetics, is the key step. Herein, we demonstrate the development of ultrathin P/Fe co-doped NiSe2 nanosheets supported on modified Ni foam (P/Fe-NiSe2) synthesized through a facile electrodeposition process and subsequent heat treatment. Based on electrochemical measurements, characterizations, and density functional theory calculations, a favorable "2 + 2" reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated. P/Fe-NiSe2 thus yields an impressive electrocatalytic performance, delivering a high current density of 100 mA cm-2 with potentials of - 168 and 200 mV for HER and HzOR, respectively. Additionally, P/Fe-NiSe2 can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine (Zn-Hz) battery, making it promising for practical application.

10.
Small ; 19(27): e2300194, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965012

RESUMO

Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3 S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm-2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3 S2 -FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3 S2 nanopyramids coated with FeNi2 P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm-2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.

11.
Small ; 19(5): e2206196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408769

RESUMO

Heterogeneous electrocatalysis typically depends on the surface electronic states of active sites. Modulating the surface charge state of an electrocatalysts can be employed to improve performance. Among all the investigated materials, nickel (Ni)-based catalysts are the only non-noble-metal-based alternatives for both hydrogen oxidation and evolution reactions (HOR and HER) in alkaline electrolyte, while their activities should be further improved because of the unfavorable hydrogen adsorption behavior. Hereto, Ni with exceptional HOR electrocatalytic performance by changing the d-band center by metal oxides interface coupling formed in situ is endowed. The resultant MoO2 coupled Ni heterostructures exhibit an apparent HOR activity, even approaching to that of commercial 20% Pt/C benchmark, but with better long-term stability in alkaline electrolyte. An exceptional HER performance is also achieved by the Ni-MoO2 heterostructures. The experiment results are rationalized by the theoretical calculations, which indicate that coupling MoO2 with Ni results in the downshift of d-band center of Ni, and thus weakens hydrogen adsorption and benefits for hydroxyl adsorption. This concept is further proved by other metal oxides (e.g., CeO2 , V2 O3 , WO3 , Cr2 O3 )-formed Ni-based heterostructures to engineer efficient hydrogen electrocatalysts.

12.
Phys Chem Chem Phys ; 24(44): 27114-27120, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342075

RESUMO

Fe-based oxides are considered as promising anode materials for lithium-ion batteries (LIBs) due to their high theoretical capacities, low cost, natural abundance and environmental friendliness. However, their severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, a hybrid of Fe2O3 nanoparticles encapsulated at the endpoints of nitrogen-doped CNTs (Fe2O3@NCNTs) is designed and prepared using a metal-catalyzed graphitization-nitridization driven tip-growth process and subsequent oxidation in air. When evaluated as an anode material for LIBs, this Fe2O3@NCNT hybrid exhibits a high capacity of 1145 mA h g-1 at 100 mA g-1, excellent rate capability of 907 mA h g-1 at 5.0 A g-1 and remarkable cycling stability of 856 mA h g-1 after 800 cycles at 1 A g-1, which are much superior to those of the Fe2O3/carbon black (CB) control material. The outstanding electrochemical performance benefits from the unique nanoarchitecture of Fe2O3@NCNTs, which provides a porous conductive matrix for effective electron-ion transport, and provides space confining carbon nanocaps as well as stress buffer nanocavities for robust structural stability during the lithiation/delithiation process. The results may pave the way for the rational structural design of high-performance metal oxide-based anode materials for next-generation LIBs.

13.
J Am Chem Soc ; 144(27): 12127-12137, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762495

RESUMO

Embedding metal species into zeolite frameworks can create framework-bond metal sites in a confined microenvironment. The metals sitting in the specific T sites of zeolites and their crystalline surroundings are both committed to the interaction with the reactant, participation in the activation, and transient state achievement during the whole catalytic process. Herein, we construct isolated Co-motifs into purely siliceous MFI zeolite frameworks (Co-MFI) and reveal the location and microenvironment of the isolated Co active center in the MFI zeolite framework particularly beneficial for propane dehydrogenation (PDH). The isolated Co-motif with the distorted tetrahedral structure ({(≡SiO)2Co(HO-Si≡)2}, two Co-O-Si bonds, and two pseudobridging hydroxyls (Co···OH-Si) is located at T1(7) and T3(9) sites of the MFI zeolite. DFT calculations and deuterium-labeling reactions verify that the isolated Co-motif together with the MFI microenvironment collectively promotes the PDH reaction by providing an exclusive microenvironment to preactivate C3H8, polarizing the oxygen in Co-O-Si bonds to accept H* ({(≡SiO)CoHδ- (Hδ+O-Si≡)3}), and a scaffold structure to stabilize the C3H7* intermediate. The Co-motif active center in Co-MFI goes through the dynamic evolutions and restoration in electronic states and coordination states in a continuous and repetitive way, which meets the requirements from the series of elementary steps in the PDH catalytic cycle and fulfills the successful catalysis like enzyme catalysis.

14.
J Colloid Interface Sci ; 606(Pt 1): 544-555, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416450

RESUMO

Photocatalysts with highly efficient charge separation are of critical significance for improving photocatalytic hydrogen production performance. Herein, a cost-effective and high-performance composite photocatalyst, cobalt-phosphonate-derived defect-rich cobalt pyrophosphate hybrids (CoPPi-M) modified Cd0.5Zn0.5S is rationally devised via defect and interface engineering, in which the co-catalyst CoPPi-M delivers a strong interaction with host photocatalyst Cd0.5Zn0.5S, rendering Cd0.5Zn0.5S/CoPPi-M with a remarkably improved efficiency of charge separation and migration. Besides, Cd0.5Zn0.5S/CoPPi-M exhibits a hydrophilic surface with ample access to electrons and a strong reduction ability of electrons. Benefiting from these advantages, the integration of defect-rich cobalt pyrophosphate and Cd0.5Zn0.5S enables Cd0.5Zn0.5S/CoPPi-M-5% with high photocatalytic H2 production rate of 6.87 mmol g-1h-1, which is 2.46 times higher than that of pristine Cd0.5Zn0.5S, and the notable apparent quantum efficiency (AQE) is 20.7% at 420 nm. This work provides a promising route for promoting the photocatalytic performance of non-precious hybrid photocatalyst via defect and interface engineering, and advances energy-generation and environment-restoration devices.


Assuntos
Cobalto , Hidrogênio , Cádmio , Difosfatos , Zinco
15.
Small ; 17(38): e2101856, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390182

RESUMO

Developing cost-efficient multifunctional electrocatalysts is highly critical for the integrated electrochemical energy-conversion systems such as water electrolysis based on hydrogen/oxygen evolution reactions (HER/OER) and metal-air batteries based on OER/oxygen reduction reactions (ORR). The core-shell structured materials with transition metal phosphide as the core and nitrogen-doped carbon (NC) as the shell have been known as promising HER electrocatalysts. However, their oxygen-related electrocatalytic activities still remain unsatisfactory, which severely limits their further applications. Herein an effective strategy to improve the core and shell performances of core-shell Co2 P@NC electrocatalysts through secondary metal (e.g., Fe, Ni, Mo, Al, Mn) doping (termed M-Co2 P@M-N-C) is reported. The as-synthesized M-Co2 P@M-N-C electrocatalysts show multifunctional HER/OER/ORR activities and good integrated capabilities for overall water splitting and Zn-air batteries. Among the M-Co2 P@M-N-C catalysts, Fe-Co2 P@Fe-N-C electrocatalyst exhibits the best catalytic activities, which is closely related to the configuration of highly active species (Fe-doping Co2 P core and Fe-N-C shell) and their subtle synergy, and a stable carbon shell for outstanding durability. Combination of electrochemical-based in situ Fourier transform infrared spectroscopy with extensive experimental investigation provides deep insights into the origin of the activity and the underlying electrocatalytic mechanisms at the molecular level.

16.
ACS Nano ; 15(7): 12109-12118, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34152122

RESUMO

For electrochemical nitrogen reduction reaction (NRR), hybridizing transition metal (TM) compounds with nitrogen-doped carbonaceous materials has been recognized as a promising strategy to improve the activity and stability of electrocatalysts due to the synergistic interaction from the TM-N-C active sites. Nevertheless, up to date, the fundamental mechanism of this so-called synergistic electrocatalysis for NRR is still unclear. Particularly, it remains ambiguous which configuration of N dopants, either pyridinic N or pyrrolic N, when coordinated with the TM, predominately contributes to this synergy. Herein, a self-assembled three-dimensional 1T-phase MoS2 microsphere coupled with N-doped carbon was developed (termed MoS2/NC), showing an impressive NRR performance in neutral medium. The hybridization of MoS2 and N-doped carbon can synergistically enhance the NRR efficiency by optimizing the electron transfer of catalyst. Acidification/blocking/poisoning experiments reveal the decisive role of pyridinic-N-Mo bonding, rather than pyrrolic-N-Mo bonding, in synergistically enhancing NRR electrocatalysis. The electrochemical-based in situ Fourier transform infrared spectroscopy (in situ FTIR) technology provides deep insights into the substantial contribution of pyridinic-N-MoS2 sites to NRR electrocatalysis and further uncover the underlying mechanism (associative pathway) at a molecular level.

17.
J Colloid Interface Sci ; 594: 113-121, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33756359

RESUMO

The "active site isolation" strategy has been proved to be efficient for enhancing the catalytic performance in propane dehydrogenation (PDH). Herein, spatially isolated cobalt oxide sites within nitrogen-doped carbon (NC) layers supported on silicalite-1 zeolite (CoOx@NC/S-1) were synthesized by a two-step process consisting of the pyrolysis of bimetallic Zn/Co zeolitic imidazole frameworks loaded on silicalite-1 (ZnCo-ZIF/S-1) under N2 and the subsequent calcination in air atmosphere. This catalyst possesses exceptional catalytic performance for PDH with the propane conversion of 40% and the propene selectivity of >97%, and no apparent deactivation is observed after 10 h PDH reaction at 600 °C. With intensive characterizations and experiments, it is indicated that the real active sites of CoOx@NC/S-1 are isolated CoO sites during the PDH process. In situ FT-IR spectroscopy shows the same intermediate product (Co-C3H7) during both propane dehydrogenation and propene hydrogenation, indicating that they have a reverse reaction process, and a reaction mechanism for PDH is proposed accordingly.

18.
ACS Appl Mater Interfaces ; 13(10): 12106-12117, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33677963

RESUMO

Developing cost-effective and controllable technologies beyond traditional overall N2 electrocatalysis is critical for the large-scale production of NH3 through electrochemical N2 reduction reaction (NRR) under ambient conditions. Herein, the aqueous rechargeable Zn-N2 battery, assembled by coupling the bifunctional cobalt phosphate nanocrystals-loaded heteroatoms-doped carbon nanosheets (CoPi/NPCS) as cathode electrocatalyst and the commercial Zn plate as anode with KOH electrolyte, was fabricated for the sustainable reduction of N2 to NH3 and power generation during discharge process. Benefiting from the desirable active components of cobalt phosphate nanocrystals and the synergistic effect between nanocrystals and carbon substrates, the CoPi/NPCS catalyst exhibits the enhanced NRR and oxygen evolution reaction (OER) performance in alkaline electrolyte. And the cobalt phosphates are confirmed as active components through the associative pathway toward NRR. When measured in the flow battery configuration with gas diffusion electrode by flowing N2 during discharge, this CoPi/NPCS-catalyzed Zn-N2 battery enables the high N2-to-NH3 yield rate of 14.7 µg h-1 mgcat.-1 and Faradaic efficiency of 16.35% at 0.6 V vs Zn2+/Zn, which can be able to maintain stable in discharge processes during cycling tests. Moreover, the impressive power output of the peak power density of 0.49 mW cm-2 and the energy density of 147.6 mWh gzn-1 are still achieved by this Zn-N2 battery, which are both higher than those of previously reported Zn-N2 batteries. This work not only provides the guideline for the rational design of robust and active bifunctional NRR-OER catalysts but also develops a reasonable and promising technology for efficient electrochemical N2-to-NH3 and power generation.

19.
J Colloid Interface Sci ; 593: 304-314, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33744539

RESUMO

Ga-based catalysts are promising for use in propane dehydrogenation (PDH) because of the relatively superior activity, but the conventional Ga-based catalysts usually suffer from serious deactivation and unsatisfactory propene selectivity. Here, ultrafine bimetallic Ga-Pt nanocatalysts encapsulated into silicalite-1 (S-1) zeolites (GaPt@S-1) were synthesized by a facile ligand-protected direct H2-reduction method. It is indicated that this catalyst is composed of confined ultra-small GaPt alloy nanoclusters and a part of isolated tetrahedral coordination of Ga species. The confined GaPt alloy nanoclusters are the active sites for PDH reaction, and their high electron density could boost the desorption of products, resulting in a high propene selectivity of 92.1% and propene formation rate of 20.5 mol g-1Pt h-1 at 600 °C. Moreover, no obvious deactivation was observed over GaPt@S-1 catalyst even after 24 h on stream at 600 °C, affording an extremely low deactivation constant of 0.0068 h-1, which is much lower than that of the conventional Ga-based catalysts. Notably, the restriction of the zeolite can enhance the regeneration stability of the catalyst, and the catalytic activity kept unchanged after four consecutive cycles.

20.
Small ; 17(22): e2005304, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33605008

RESUMO

Nanoporous metal phosphonates are propelling the rapid development of emerging energy storage, catalysis, environmental intervention, and biology, the performances of which touch many fundamental aspects of portable electronics, convenient transportation, and sustainable energy conversion systems. Recent years have witnessed tremendous research breakthroughs in these fields in terms of the fascinating pore properties, the structural periodicity, and versatile skeletons of porous metal phosphonates. This review presents recent milestones of porous metal phosphonate research, from the diversified synthesis strategies for controllable pore structures, to several important applications including adsorption and separation, energy conversion and storage, heterogeneous catalysis, membrane engineering, and biomaterials. Highlights of porous structure design for metal phosphonates are described throughout the review and the current challenges and perspectives for future research in this field are discussed at the end. The aim is to provide some guidance for the rational preparation of porous metal phosphonate materials and promote further applications to meet the urgent demands in emerging applications.


Assuntos
Nanoporos , Organofosfonatos , Adsorção , Catálise , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA